25,098 research outputs found

    The MICZ-Kepler Problems in All Dimensions

    Full text link
    The Kepler problem is a physical problem about two bodies which attract each other by a force proportional to the inverse square of the distance. The MICZ-Kepler problems are its natural cousins and have been previously generalized from dimension three to dimension five. In this paper, we construct and analyze the (quantum) MICZ-Kepler problems in all dimensions higher than two.Comment: A minor technical error in section 5.2 (see footnote 6) is correcte

    Lambda and Anti-Lambda Hypernuclei in Relativistic Mean-field Theory

    Full text link
    Several aspects about Λ\Lambda-hypernuclei in the relativistic mean field theory, including the effective Λ\Lambda-nucleon coupling strengths based on the successful effective nucleon-nucleon interaction PK1, hypernuclear magnetic moment and Λˉ\bar\Lambda-hypernuclei, have been presented. The effect of tensor coupling in Λ\Lambda-hypernuclei and the impurity effect of Λˉ\bar\Lambda to nuclear structure have been discussed in detail.Comment: 8 pages, 2 figures, Proceedings of the Sendai International Symposium "Strangeness in Nuclear and Hadronic Systems SENDAI08

    Time-odd triaxial relativistic mean field approach for nuclear magnetic moments

    Get PDF
    The time-odd triaxial relativistic mean field approach is developed and applied to the investigation of the ground-state properties of light odd-mass nuclei near the double-closed shells. The nuclear magnetic moments including the isoscalar and isovector ones are calculated and good agreement with Schmidt values is obtained. Taking 17^{17}F as an example, the splitting of the single particle levels (around  0.7~0.7 MeV near the Fermi level), the nuclear current, the core polarizations, and the nuclear magnetic potential, i.e., the spatial part of the vector potential, due to the violation of the time reversal invariance are investigated in detail.Comment: 26 pages, 8 figures. PHYSICAL REVIEW C (accepted

    Spatially distributed water-balance and meteorological data from the Wolverton catchment, Sequoia National Park, California

    Get PDF
    Accurate water-balance measurements in the seasonal, snow-dominated Sierra Nevada are important for forest and downstream water management. However, few sites in the southern Sierra offer detailed records of the spatial and temporal patterns of snowpack and soil-water storage and the fluxes affecting them, i.e., precipitation as rain and snow, snowmelt, evapotranspiration, and runoff. To explore these stores and fluxes we instrumented the Wolverton basin (2180-2750 m) in Sequoia National Park with distributed, continuous sensors. This 2006-2016 record of snow depth, soil moisture and soil temperature, and meteorological data quantifies the hydrologic inputs and storage in a mostly undeveloped catchment. Clustered sensors record lateral differences with regards to aspect and canopy cover at approximately 2250 and 2625 m in elevation, where two meteorological stations are installed. Meteorological stations record air temperature, relative humidity, radiation, precipitation, wind speed and direction, and snow depth. Data are available at hourly intervals by water year (1 October-30 September) in non-proprietary formats from online data repositories (https://doi.org/10.6071/M3S94T)

    Evolution of Nuclear Shell Structure due to the Pion Exchange Potential

    Full text link
    The evolution of nuclear shell structure is investigated for the first time within density-dependent relativistic Hartree-Fock theory and the role of π\pi-exchange potential is studied in detail. The energy differences between the neutron orbits \Lrb{\nu1h_{9/2},\nu 1i_{13/2}} in the N=82 isotones and between the proton ones \Lrb{\pi1g_{7/2},\pi1h_{11/2}} in the Z=50 isotopes are extracted as a function of neutron excess N−ZN-Z. A kink around Z=58Z = 58 for the N=82 isotones is found as an effect resulting from pion correlations. It is shown that the inclusion of π\pi-coupling plays a central role to provide realistic isospin dependence of the energy differences. In particular, the tensor part of the π\pi-coupling has an important effect on the characteristic isospin dependence observed in recent experiments.Comment: 4 pages and 4 figure

    Solving the Dirac equation with nonlocal potential by Imaginary Time Step method

    Full text link
    The Imaginary Time Step (ITS) method is applied to solve the Dirac equation with the nonlocal potential in coordinate space by the ITS evolution for the corresponding Schr\"odinger-like equation for the upper component. It is demonstrated that the ITS evolution can be equivalently performed for the Schr\"odinger-like equation with or without localization. The latter algorithm is recommended in the application for the reason of simplicity and efficiency. The feasibility and reliability of this algorithm are also illustrated by taking the nucleus 16^{16}O as an example, where the same results as the shooting method for the Dirac equation with localized effective potentials are obtained
    • …
    corecore